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Abstract 

A simple theory is developed that predicts impact sensitivities in crystalline explosives from 
vfbrational spectra measured at room temperature. The theory uses Raman spectra of energetic 
materials to construct vibrational energy level diagrams, which are then used as input for a model 
designed to calculate the rate of energy transfer from phonon and near-phonon vibrational energy 
levels to higher energy vibrational levels. Energy transfer rates are determined using Fermi's 
GoMen Rule, and results from simple theories of near-resonant energy transfer. The application 
of the theory and model, using Raman spectra of seven different neat explosive samples, gives 
results in good agreement with results of drop weight impact tests. 
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1. INTRODUCTION 

One of the simplest and oldest tests used to determine relative sensitivities of explosives and 

propellants is the drop weight impact test [1]. Although there are many variations of the test, in 

general, all such tests involve dropping a weight from various heights onto a small amount of 

explosive or propellant and determining the minimum drop height that causes the material to react. 

Typical experimental parameters use tens of milligrams of explosive or propellant and drop a several 

kilogram weight from several to hundreds of centimeters in height [2]. Results are reported in terms 

of Go-No Go, where a Go may range from an explosion to a smoldering deflagration. An example 

of a typical drop weight test apparatus is shown in Figure 1. 

Results from an impact test designed to measure the energy transferred to the sample show that 

for sensitive explosives initiation occurs early in the impact event [2], when there is a relatively small 

decrease in the velocity of the impactor. Typically, results show that ignition of a 50-mg explosive 

sample occurs when the change in kinetic energy of the impactor (V0 > 10 m/s) is on the order of a 

few joules, and that initiation occurs from several to tens of microseconds after the impactor comes 

in contact with the sample [2], when the velocity of the impactor has decreased by just a few percent 

(see Figure 2). 

Assuming a heat capacity [3], C , of the sample at room temperature similar to the explosive 

RDX (0.3 cal/gramK) and uniform distribution of 2 J of energy throughout a 50-mg sample, the 

change in sample temperature, AT = AE/Cp , for the typical test just described is approximately 

31 K. Since this temperature rise is insufficient to initiate reaction in practically all energetic 

materials, the kinetic energy of the impactor, for a Go event, must be localized over a small fraction 

of the entire sample. From this it follows that, for materials of differing impact sensitivity, the volume 

of material into which the impact energy is distributed determines the impact sensitivity. Some 

current theories of impact sensitivity [4] postulate that initiation is due to energy dissipation and 

localization that takes place during plastic deformation and the ability of the material to shear along 

certain axes [5]. For these theories, rates of intramolecular energy transfer are secondary within the 

molecules making up the molecular crystal, since the volume into which the impact energy is 



deposited is sufficiently small that the temperature rise of the material within the perturbed volume 

is several times the decomposition temperature. If low-energy impact initiation is such a thermal 

process, a measurement of the ability of a series of energetic materials to form shear bands for a given 

application of force should correlate well with measured impact sensitivities. To our knowledge, no 

measurement of this type has been made. 

Another possible factor contributing to low-energy impact initiation is that the rate at which 

energy is transferred from the impact event into vibrational modes of the energetic material influences 

the onset of chemistry. If we suppose that the shear volume for most crystalline energetic materials 

is about the same for a given impact event, and that thermal equilibrium is always maintained during 

the impact event, then sensitivities should track according to decomposition temperatures. This is 

not the case. Since rates of energy transfer in molecular crystals are sufficiently fast [6] that thermal 

equilibrium should be maintained throughout a low-energy impact event, in order for energy transfer 

rates to play a role in determining impact sensitivity, there must be a mechanism that allows for 

deviations from thermal equilibrium during or immediately following the impact event 

For significant deviation from thermodynamic equilibrium to occur following a perturbation, the 

perturbation must be faster than those processes that maintain the statistical energy distribution within 

a molecule or collection of molecules. In crystalline materials, thermal energy initially excites the 

lowest energy lattice and molecular vibrations and is rapidly equilibrated throughout the full 

vibrational mode structure of the molecule [7]. Lattice and low-energy molecular vibrations in 

molecular crystals have frequencies near 1012 s"1. This means that for the typical impact test 

mentioned previously, 10 low-energy vibrations occur per microsecond for the duration of the 

energy transfer from impactor to the affected volume of the explosive. With regard to deviations 

from thermal equilibrium, energy transfer of 2 J from impactor to explosive occurring over 1 us is 

similar to slow heating of the explosive over much longer time scales. The conclusion is that direct 

coupling of mechanical energy from impactor collision into the vibrational modes of the explosive 

occurs too slowly to cause significant deviation from thermal equilibrium. 



We propose a mechanism that takes the slow impact from the drop weight and directs this energy 

rapidly into the molecule in a way that leads to significant deviations from thermal equilibrium. In 

what follows, we develop ideas, based on the Raman spectra of explosive materials, for preferentially 

redistributing energy from impact into vibrational modes that lead to the onset of chemistry. 

2. IMPACT INITIATION MODEL 

The first part of the mechanism we propose for impact initiation of a crystalline energetic material 

involves a load-to-shear event. During a low-velocity impact, a pressure load is created on the 

crystal. Because the load is not distributed isotropically, at a threshold load pressure, the crystal 

shears (dislocates) along a fracture plane in a way that reduces the pressure load. This is the key to 

conversion of the slow loading process to a fast process. Essentially, the load buildup causes the 

crystal to fail (fracture) along a shear plane [8]. This process is illustrated in Figure 3. 

For purposes of estimating the shear (dislocation) velocity in molecular crystals, we use the 

velocity associated with crack growth. For molecular crystals under load, typical values of crack 

growth velocity [9] are near 103 m/s. Velocities of shear (dislocation) bands in the vicinity of the 

crack decrease rapidly as the distance from the crack front increases [10]. Typical bond lengths [11] 

in HMX are less than 2 x 10 m. This means that during crack and associated shear band formation, 

near the crack front, molecules in adjacent (fracture or shear) planes are moved, relative to each 

other, a distance of several bond lengths in hundreds of femtoseconds. This dislocation breaks 

intermolecular bonds associated with phonon modes in the crystal lattice in a time less than one 

phonon period of vibration. This results in the dislocation "focusing" the impact energy into the 

phonon modes of the intact material adjacent to the dislocation in a time less than one period of 

vibration of the modes being excited. This rapid deposition of energy into the phonon modes of the 

molecule creates a nonequilibrium distribution of energy among the vibrational modes of the 

molecule. 

The second part of the impact initiation mechanism proposed here depends on the vibrational 

mode structure of the energetic material. It is generally assumed that a molecular solid is a weakly 



interacting system of individual molecules [12]. Vibrations within the solid are usually divided 

between phonon states, which are vibrations involving the crystal lattice and may not be ascribed to 

an individual molecule, and internal vibrational states, which are localized on individual molecules. 

Because the phonon modes are properties of the crystal lattice, they are often referred to as being 

delocalized and may be visualized as a "bath" of collective states of the entire solid, which lie lower 

in energy than the individual molecular internal vibrational states (see Figure 4). When energy is 

deposited into the phonon modes of the crystal, equilibrium is maintained by the transfer of energy 

from the phonon modes to the internal vibrational modes. The anharmonic coupling of the phonon 

modes with the internal molecular vibrations, and the excitation of higher lying vibrational modes, is 

often termed "vibrational up-pumping." Extensive investigations into this phenomenon have been 

made by Dlott et al. [13]. 

In our model, we postulate that the initial excitation (from the shear [dislocation] event) is 

instantaneously distributed, according to Boltzmann statistics, among the phonon modes and those 

low-lying vibrational modes with fundamental energies of less than 250 cm"1. This cutoff value was 

chosen as the maximum value of a fundamental vibration that is highly coupled to the phonon "bath" 

of the bulk, since phonon densities of states for the energetic materials examined in this report reach 

a maximum (room temperature) near 100 cm"1. Overtones of these low-lying vibrational modes are 

also populated. Higher energy fundamental internal vibrational energy levels are not affected by the 

initial perturbation, since the perturbation occurs on a time scale faster than a period of vibration of 

the phonon modes excited by the initial shear-dislocation event. Impact sensitivity is determined by 

how fast energy is transferred from this initially excited group of states, which we call the "phonon 

manifold," to internal vibrational states with fundamental vibrational energies up to 700 cm"1 

("internal vibrational manifold"). This upper limit cutoff value was chosen because previous work 

[14] has indicated that energy transfer into vibrational modes between 400 cm"1 and 600 cm" may 

be rate determining for shock-induced initiation. We propose that the rate of this energy transfer is 

governed by Fermi's Golden Rule [15], which states that energy transfer is most efficient for resonant 

processes. Off-resonance energy transfer is a function of the product of the optical line width of the 

state being excited and the phonon density of states. Materials that transfer energy to the "internal 

vibrational manifold" fastest are most sensitive because a greater fraction of the initial energy goes 



into vibrational modes that may lead to bond breaking, instead of being distributed among the phonon 

"bath" of the bulk material. Finally, we use measured Raman spectra to construct energy level 

diagrams, using a harmonic oscillator approximation, for several explosive materials, and obtain a 

quantitative measure of impact sensitivity using an energy transfer model based on the ideas presented 

previously. 

3. EXPERIMENTAL 

The experimental apparatus has been described previously [16]. Briefly, the equipment employed 

in these experiments consists of a Bomem DA-8.02 Fourier transform infrared spectrometer, to which 

a Raman accessory has been added. Incident laser radiation is provided by a Quantronix Series 100 

Nd:YAG laser. A simple sketch of the experimental apparatus is shown in Figure 5. Raman-shifted 

radiation is collected using a back-scattering geometry and is detected, after filtering and 

interferometer modulation, using a liquid nitrogen-cooled InGaAs detector. All spectra reported here 

were measured at 4 cm"1 resolution using coaddition of 256 scans. The incident laser power at the 

sample was 400 mW. Neat samples (typically white or yellow powders) of energetic materials were 

placed in 1-mm i.d. glass capillary tubes, and the NdrYAG laser focused (spot size approximately 

0.5 mm diameter) on the surface of the tube. A near-infrared viewing scope (FJW Optical Systems) 

was used to visually check laser alignment and also to ensure that the back-scattered radiation was 

brought to a tight focus at the entrance aperture of the spectrometer. No correction was made to any 

of the spectra to account for responsivity of the detector, interferometer, or filters used in the 

experiments. All energetic materials used in these experiments were obtained from in-house sources. 

4. BACKGROUND 

In calculations to determine impact sensitivity, we use Raman spectra to construct an energy level 

diagram for the solid explosives used in this study. We use Raman spectroscopy because 

measurements are well resolved, rapid, in situ, nondestructive, and have proven useful in the 

characterization of explosives [16]. Because energies of vibrational levels are required for the 

calculations performed here, the best approach is to use values of energies of vibrational levels from 



a normal mode analysis of each material under consideration. Unfortunately, calculations for most 

energetic materials have yet to be performed, especially those calculations which include lattice 

perturbations to the internal vibrations. Also, application of the theory outlined here on an unknown 

material cannot rely on information obtained using a normal mode analysis. Additionally, symmetry 

exclusions [17] prevent Raman spectroscopy from measuring all internal fundamental vibrational 

transitions. As a measure of the error that might be caused by using a Raman spectrum to construct 

a vibrational energy level diagram for an energetic material, a density functional theory calculation 

for a single molecule of RDX was performed [18]. Table 1 shows a comparison (from 100 cm"1 to 

700 cm"1) of calculated and observed (using Raman spectroscopy) vibrational frequencies for RDX. 

Although the agreement between observed and calculated values shown in Table 1 is good, the 

agreement probably would have been better if perturbations from the crystal lattice were included in 

the calculation. Agreement at higher frequencies (not shown) was always within a few percent of the 

calculated value. Agreement between all observed and calculated values, with one exception, is 

always less than 6%, with the one exception by 9%. We believe that the three frequencies not 

predicted by the calculation are due to lattice modes (149 cm"1,168 cm"1) or to lattice mode-internal 

mode coupling (487 cm"1). Of the 14 calculated modes between 100 cm"l and 700 cm"1,11 were 

observed in the Raman spectrum, although one mode, calculated at 438 cm" , was obscured by 

shoulders, in the measured spectrum, from adjacent peaks. 

As an example of the application of the proposed theory, we examine impact initiation in two of 

the polymorphs of HMX. HMX (Octahydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine) is an important 

energetic material used in explosives and propellant formulations. HMX is known to exist in the solid 

state in four polymorphic forms, referred to as a-, ß-, y-, and 6-HMX [19]. Figure 6 shows the 

Raman spectrum of ß- and y-HMX shifted from 200 cm"1 to 1,600 cm"1 relative to the laser line. 

The spectra are not superimposable, with the most apparent differences in peak position occurring 

at small Raman shifts. ß-HMX is the most commonly encountered form of HMX and is more 

thermally stable than y-HMX. ß-HMX exists in the "chair" configuration, giving the molecule a 

center of symmetry, while y-HMX exists in a "boat" configuration, ß- and y-HMX are well suited 

for studies of impact initiation since they differ markedly in their impact sensitivity [20]. ß-HMX is 

less sensitive and has an impact sensitivity in the mid-range of most secondary explosive materials 



(similar to RDX). On the other hand, y-HMX has an impact sensitivity more like a primary explosive 

(similar to Pb styphnate). y-HMX may be quantitatively prepared from ß-HMX by a safe and simple 

method [20]. 

5. QUALITATIVE EVALUATION OF IMPACT SENSITIVITIES 

In accordance with the previous discussion, Figures 7 and 8 are energy level diagrams 

constructed, using the spectra shown in Figure 6, of vibrational levels for ß-HMX and y-HMX up 

to 700 cm" . Since intramode vibrational energy transfer is assumed to be rapid [21], overtone 

vibrational levels are included for each transition measured in the spectra. This is an essential feature 

of the model presented here. Overtone energy levels are assumed to be integral multiples of energies 

of Raman spectral features below 250 cm"1 shift. By assuming that overtone levels are harmonic with 

the fundamental, we are assuming that energy transfer from a third overtone level is identical to 

energy transfer involving four quanta of the fundamental. As previously mentioned, it was assumed 

that the rate limiting step for impact induced chemical reaction involves transfer of energy from the 

"phonon manifold" to "internal vibration manifold" modes having fundamental energies between 

400 cm" and 700 cm1 . Previous studies [14] have reported a correlation between impact 

sensitivities and densities of states over this region of the spectrum for several energetic materials. 

Additionally, intramode energy transfer at energies above these values is believed to occur fast 

enough so that quasi-equilibrium is always maintained among higher energy states [22]. We propose 

that the rate of energy transfer from overtones (or equivalently, multiphoton transitions) of "phonon 

manifold" molecular vibrations to fundamental vibrations belonging to the "internal vibration 

manifold" plays a role in determining impact sensitivity. These energy transfer processes are assumed 

to be most efficient when the energy mismatch between donor and acceptor states is minimized. In 

addition, energy transfer is most favored when the total quantum number change that accompanies 

the process is minimized [23]. Figures 7 and 8 show that the number of energy transfer processes 

originating from the "phonon manifold" that have small energy mismatches (arbitrarily chosen as 

AE < 10 cm"1) for transitions that excite fundamental vibrations between 400 cm"1 and 700 cm"1 in 

y-HMX is double that for ß-HMX. This suggests that y-HMX should be the more impact sensitive 

of the two polymorphs, in agreement with experiment. 



6. ENERGY TRANSFER MODEL 

To obtain a quantitative measure of impact sensitivity from measured vibrational frequencies of 

the crystalline and polycrystalline explosive samples analyzed in this report, it was necessary to 

construct a numerical model which describes energy redistribution in the solid following a 

perturbation. The framework of that model is described in the following paragraphs. 

As postulated previously, energy from the shear-dislocation event is deposited into the phonon 

modes and those low-lying internal molecular vibrational modes that have fundamental vibrational 

energies very near to, or within, the phonon energy "bath." For this study, it was assumed that 

internal molecular vibrations with fundamental vibrational frequencies less than 250 cm are strongly 

coupled to the phonon modes and that the initial perturbation (shear-dislocation event) excites these 

low-lying internal vibrational modes, and their overtones, at the same rate at which the phonon modes 

are excited. It should be emphasized that this assumption is a main difference between the theory 

described here and previous theories of vibrational up-pumping [7]. 

In our model, the energy from the initial perturbation is instantaneously distributed among the 

energy levels of the "phonon manifold" according to Boltzmann statistics, while the vibrational energy 

levels outside of the "phonon manifold" remain unaffected. As discussed previously, this occurs 

because the excitation from the shear-dislocation event is faster than most relaxation processes in the 

solid. Following the initial, fast perturbation, energy redistribution takes place from the "phonon 

manifold" to the "internal vibrational manifold." Vibrational energy transfer can then occur between 

all levels contained in the model. It should be emphasized that since the initial perturbation is 

distributed among the energy levels within the "phonon manifold" according to Boltzmann statistics, 

energy transfer from overtones of fundamental vibrations becomes important. The model essentially 

simulates microscopic energy transfer between two thermal baths. Sensitivity is determined by the 

rate at which energy is transferred from the initially excited "phonon manifold" to the "internal 

vibrational manifold." This process is shown in Figure 9. 



The model employed to describe energy transfer is a simple hybrid of previous theories that have 

been used with success to describe vibrational energy transfer in gases [15] and vibrational up- 

pumping in solids [7]. The main idea is that the predominant pathway of energy randomization 

following a fast perturbation is intramolecular. That is, energy is transferred from one state of a 

molecule to another state of the same molecule. Impact sensitive materials transfer energy into higher 

energy fundamentals faster than less sensitive materials. The initially nonstatistical ensemble of 

excited molecules eventually reaches a distribution described by Boltzmann statistics. 

For the model developed here, the vibrational energy transfer rate kinetics are unimolecular. The 

rate of energy transfer is dependent on the energy mismatch between the two vibrational levels 

exchanging energy, whether the transfer is intramode or intermode (intramode is favored), and the 

total quantum number change for the transfer (small changes are favored). These conventions are 

in keeping with standard theories of vibrational energy transfer in condensed phases and in gases [15]. 

The first-order rate constant used to describe energy transfer between vibrational levels in the 

solid is a function of the transfer energy mismatch AE = Ej - E:, where Ej is the energy of the state 

initially excited, and Ej is the state to which energy is transferred, and T is the temperature of the 

system We have chosen the dependence of the rate constant on the transfer energy mismatch to be 

proportional to seclr (AE/kT), in accordance with simple treatments of near-resonant energy transfer 

in gases [24]. A difference between the function employed here to describe rate constant dependence 

on energy mismatch and that used for gas phase work is as follows. For gas phase vibrational energy 

transfer, energy mismatch must be made up by rotations, for which the density of states is near a 

maximum near zero energy. However, for solid phase transitions, energy mismatch must be made 

up by phonons, for which the density of states is typically peaked [14] near 100 cm"1. A reasonable 

function to use for solid-state calculations is the product of the density of states function with a 

function that describes the optical width of the vibrational energy transition. The resulting function 

is zero near zero energy mismatch and is slightly broader than the optical line width (see Figure 10). 

For calculations employed here, an approximation to this product function is used (see Figure 10) that 

is peaked near zero energy mismatch, in accordance with Fermi's Golden Rule. Additionally, 

inclusion of resonant energy processes implicitly takes into account higher order phonon processes. 



All transition rate constants are first calculated in the exothermic direction, and microscopic 

reversibility used to calculate the rate constant for the endothermic process. When there is an energy 

mismatch, AE, accompanying energy transfer, energy must be taken up by or supplied by the bulk 

sample. When this happens, heating and cooling of the sample occurs, changing the equilibrium 

population distributions. The inclusion of heating is necessary for proper performance of the model. 

The calculation of the time dependence of vibrational level populations following perturbation 

divides the populations in each level into an equilibrium part, Nje, and a perturbation part nj, where 

the subscript I refers to the level in question. It may be shown [25] that for first order rate processes 

in multilevel systems, the change in the deviation from equilibrium population of level J is 

approximated by 

Anj = {S: **J [Ku nj - Sr ™ [Kn nj] }At, (1) 

where the sum is over all levels (except I = J), Kn and KJJ are forward and reverse rate constants, n: 

and nj are deviations from equilibrium population of levels I and J, respectively, and At is the time 

increment. The change in temperature, AT, over the same time interval is given by 

AT = 2I(nI(t)-nI(t-l))EI/CPI, (2) 

where the sum is over all levels, nj(t) and nj(t-l) are population deviations from equilibrium separated 

by one time element, El is the energy of level I, and CPI is the vibrational contribution to the heat 

capacity of level I. 

Figure 11 shows the vibrational energy level structure for a synthetic 10-level molecule used to 

test the model for vibrational energy transfer outlined previously. Figure 11 shows relative rates of 

energy transfer for different transitions, where the rate of each transition is dependent upon energy 

mismatch, AE, for the transition being considered. 

10 



Figure 12 shows results of calculations, using the model just described, of changes in vibrational 

level population deviations from equilibrium for the energy level system in Figure 11, following a 

perturbation of the phonon modes equivalent to raising the "phonon manifold" temperature to 

1,000 K. The two levels, from Figure 11, shown in Figure 12 are the highest energy excited "phonon 

manifold" level (mode 1, level 4) and the "internal vibration manifold" level with energy closest to 

this "phonon manifold" level (mode 3, level 1). Since these two levels are similar in energy, they 

equilibrate quickly, and then, as a coupled pair, equilibrate with the remainder of the energy levels 

in the model system. Since the initial perturbation supplied energy to the model system, the new 

equilibrium level is caused by the overall increase in system temperature. 

Recently, Fried and Ruggiero [14] have calculated rates of upconversion from phonon modes to 

internal vibrational modes. Rates of energy transfer from phonon modes to internal vibrational modes 

are calculated as a function of the density of states which may contribute energy during the 

upconversion process. Since optical measurements of intensities of vibrational transitions yield 

information on the density of states only for k ~ 0 (a limitation when using Raman spectroscopy), 

Fried and Ruggiero use neutron scattering data to estimate densities of states. The authors then 

calculate rates of energy transfer from phonon modes into internal vibrational modes which are 

deemed likely to lead to the onset of reaction (e.g., vibration of the N-N bond in a nitramine). A 

good correlation is shown between rates of energy transfer from phonon modes to particular 

frequencies that may lead to onset of reaction. 

We have chosen a slightly different approach for several reasons. First, we wished to incorporate 

our model for low-energy impact initiation by shear/dislocation with an easily accessible diagnostic 

such as Raman spectroscopy. Second, our model supposes that the phonon modes maintain 

equilibrium among themselves throughout the upconversion process and that the relaxation process 

involves equilibration of two energy baths, one composed of the phonon modes and one composed 

of the internal vibrational energy modes. Also, we believe that the overall internal vibrational mode 

temperature is rate detenruning, since at higher energies the internal vibrational modes equilibrate 

rapidly. Therefore, relating single mode internal vibrational mode temperatures to impact sensitivities 

may be misleading. 

11 



Figure 13 shows the change in energy of the "phonon manifold" as a function of time after initial 

perturbation, for the 10-level system described previously. The three curves represent vibrational 

level systems that are identical, except that they differ slightly in the energies of the vibrational levels 

that make up the "internal vibration manifold." The three systems have three, one (shown in 

Figure 11), or zero "internal vibration manifold" energy levels within 10 cm"1 of a "phonon manifold" 

energy level. The energy level structures of the three systems are shown in Table 2. 

Figure 13 shows that for the model 10-level vibration system presented previously, the change 

in energy of the "phonon manifold," at times immediately following the initial perturbation, is 

dependent upon the number of near-resonant energy transfer pathways from the "phonon manifold" 

to the "internal vibration manifold." 

7. RESULTS AND DISCUSSION 

To extend the model described previously to evaluation of real explosive samples, energy level 

diagrams, from measured Raman spectra [26], were constructed for the neat explosives PETN, 

ß-HMX, Y-HMX, TATB, nitroguanidine, RDX, and TNT. Table 3 shows the chemical name for 

each compound examined in this test and experimentally determined (drop weight test) impact 

sensitivities [27]. To generate the energy levels used as input to the model calculation, a commercial 

software peak picking routine (Grams 386, Galactic Industries) was used to select all Raman spectral 

features between 100 cm"1 and 700 cm"1 for each of the explosive samples. Each peak selected was 

assumed to belong to a different mode of internal vibration in the molecule. For each peak measured 

with an energy less than 350 cm"1, an overtone was generated by multiplying the energy of that peak 

by integral values, such that overtones up to 700 cm"1 were included as input to the model 

calculation. By this convention, a single spectral peak measured at 100 cm"1 would have six overtone 

levels considered in the calculation. 

Once the energy level diagram was constructed, all modes with fundamentals less than 250 cm" 

were considered as part of the "phonon manifold," with all other modes belonging to the "internal 

vibration manifold." The initial perturbation then excited all modes with fundamentals less than 
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250 cm"1, and the overtones associated with each of those modes. The excitation was distributed 

among these fundamental and overtone levels according to the Boltzmann distribution. The 

excitation used was an initial heating of the phonon manifold to 1,000 K. Several other, lesser 

degrees of heating were tried to see if the degree of initial excitation affected the behavior of the 

model. In each case, the output of the model was independent of the magnitude of the initial 

excitation, as expected, since first order kinetics are employed in the model. 

The first order intramolecular energy transfer rate constant for resonant processes was 

approximated in the following manner. Measurements [15] of vibrational relaxation of diatomic 

molecules in inert gas matrices have shown the first order rate constant for processes with an energy 

mismatch, AE, near 100 cm"1 to be on the order of 1 x 1010 sec"1. For this work, we have chosen 

the dependence of the rate constant on the transfer energy mismatch to be proportional to sech2 

(AE/kT). Using this function, an energy transfer process with an energy mismatch of 100 cm"1 would 

have a resonant (AE = 0) energy transfer rate constant of 1 x 1013 sec"1. This value for the first order 

rate constant for resonant energy transfer processes was used throughout the calculations reported 

here. 

Figure 14 shows the change in "phonon manifold" energy as a function of time after initial 

perturbation, for the seven explosive materials examined for this report. Figure 15 shows a plot of 

"phonon manifold" energy change during the first 10 fs following the perturbation, calculated using 

the model developed here, vs. experimentally determined impact sensitivities. The calculated 

differences between very sensitive (PETN, y-HMX) and sensitive (RDX, ß-HMX) are small, with 

the differences between the sensitive materials and insensitive materials (TATB, nitroguanidine) much 

larger. The correlation between results of impact tests for these explosives and calculated rates of 

energy transfer from the "phonon manifold" of each of the explosives is good. We should note that 

TATB and nitroguanidine are among the most insensitive of all explosives, and the reported impact 

sensitivities for these compounds varies in the literature. We chose to use values reported in one of 

the most used references [27], which reported an impact sensitivity for TATB of 50 N-m, and 

reported "no reaction up to 49 N-m" for nitroguanidine. 
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Figure 14 shows that for each of the explosive samples examined in this report, the energy 

transferred from the "phonon manifold" reaches at least half of its initial value in less than 50 fs. 

During the shear-dislocation event, only a small fraction of the bulk sample is actually perturbed, with 

phonons dissipating heat rapidly throughout the bulk material. Phonons travel at approximately the 

speed of sound in solid materials (generally on the order of several micrometers per nanosecond 

[28]). Therefore, for the model reported here, dissipation of energy from the phonon manifold to 

the bulk of the material is much slower than energy transfer from the "phonon manifold" to the 

"internal vibration manifold." 

There seems to be general agreement that many different physical properties and processes 

occurring within the solid phase contribute to impact sensitivity [29]. We believe these results show 

that the number of near-resonant energy transfer processes which can result in energy transfer 

between the "phonon manifold" and the "internal vibration manifold" of a crystalline explosive 

material influences low-energy impact sensitivity. These results support the importance of shear- 

dislocation effects in molecular crystals, allowing a slow event (impact) to rapidly channel energy into 

specific vibrational modes of the molecule. 

The model has several shortcomings, chief among which are that we have not accounted for 

anharmonicity of vibrational levels, have neglected transition intensities, and have not considered 

orthogonality of eigenvectors of vibrations in calculating energy transfer rates. We hope to be able 

to address these limitations in the near future. Additionally, we have not mentioned effect of particle 

size on sensitivity, although current work in our lab (not presented here) shows correlation between 

model calculations and impact testing of RDX of particle sizes from 38 yum to several millimeters. 

Several ways to improve and check the theory are currently being explored. These include 

calculations of how the lattice perturbs the individual molecule, inclusion of degeneracies and 

transition intensities in the rate calculations (not included in the current model), inclusion of 

combination (i.e., three state) transitions, and refinement of the calculation of rate coefficients for 

near-resonant energy transfer in condensed media. However, even given the shortcomings of the 

current model, the success of the theory outlined previously in determining impact sensitivities from 
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room temperature measurements of Raman spectra of crystalline explosives merits further 

consideration. 

8. CONCLUSION 

A new mechanism that contributes to the determination of low-energy impact initiation of 

crystalline energetic materials, based upon transition of a slow event (impact) into a fast event (shear- 

dislocation), is proposed. The effect of the shear-dislocation event is to deposit energy into a band 

of molecules adjacent to the shear-dislocation planes faster than energy redistribution processes can 

randomize that energy. Following this rapid, exclusive perturbation of low-energy modes, the initial 

rate of energy transfer from these low energy modes into states with higher energy is determined by 

Fermi's Golden Rule. Results of calculations suggest that this initial rate of energy transfer, from 

states within a low-energy "phonon manifold" to states within a higher energy "internal vibrational 

manifold," plays a role in determining impact sensitivities of the explosives examined in this report. 
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Table 1. A Comparison of Measured Raman Shift Frequencies for Neat RDX, and 
a Density Functional Theory Calculation for a Single Molecule of RDX 

Observed Raman Shift 
(cm"1) 

Calculated Vibrational Frequency (cm ])/ 
Intensity (KM/Mol) 

109 107/0.0074 

149 — 

168 — 

206 209/8.3177 

225 229/1.7658 

346 325/2.5840 

385 371/0.0752 

415 403/8.5605 

405/0.6307 

Obscured 438/5.8478 

462 463/25.9101 

487 — 

546 579/10.1865 

590 588/0.3703 

605 609/14.5462 

651/0.6618 

668 676 
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Table 2. Vibrational Energies (cm"!) of Levels That Make Up the Three, 
10-Level Systems Shown in Figure 13. The First Two Columns in 
Each Distribution Belong to the Internal Vibration Manifold 

System 1—Level Energies 
3 Transitions AE<10 cm-1 

System 2—Level Energies 
1 Transition AE<10 cm"* 

System 3—Level Energies 
0 Transitions AE<10 cm"1 

150 280 600 601 602 150 280 600 625 640 150 280 580 625 640 

300 560 300 560 300 560 

450 450 450 

600 .600 600 

Table 3. The Seven Explosive Samples Analyzed in This Report, and Experimentally 
Determined Impact Sensitivities 

Explosive Material Impact Sensitivity 
[27] 

Calculated Change in Phonon 
Energy for First 10 fs 

Following Shear-Dislocation 
(J) 

PETN (pentaerythrol tetranitrate) 3 N-m -50.43 

Y-HMX (y-cyclotetramethylene 
tetranitramine) 

est 3 N-m -51.51 

ß-HMX (ß-cyclotetramethylene 
tetranitramine) 

7.4 N-m -40.35 

RDX (cyclo-l,3,5-trimethylene- 
2,4,6-trinitramine) 

7.4 N-m -46.85 

TNT (trinitrotoluene) 15 N-m -35.67 

TATB (triaminotrinitobenzene) 50 N-m -12.50 

Nitroguanidine >49 N-m -09.25 
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Optical Sensor 

Pressure Gauge 

y   Strain Gauge 

Guide Rods 

Drop Weight (10 kg) 

Sample (50 mg) 
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Figure 1. An example of a typical drop weight test apparatus. 

Force on Drop Weight 

Light Emission 

Figure 2. Typical results of an energy-to-ignition test, showing initiation occurring 
early in the impact event. 
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Slow Event 
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Figure 3. A schematic of the load-to-shear process in a crystalline energetic material. 
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Nd:YAG 
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Figure 5. Simple diagram of the experimental apparatus used in these experiments. 
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Figure 6. The FT-Raman spectra of ß-HMX and of y-HMX. The signal-to-noise 
ratio in the spectrum of y-HMX is lower than that of ß-HMX, partially 
due to the lower density of y-HMX. 

x> 
E «» 
3 
C 

s 

-   <- 
AE=8 cm-1 

- -<- 
- *<- -   AE=-7 cm-1 

■>■ - 

AE—1 cm-1 

Mode Number 

Figure 7. An energy level diagram for ß-HMX constructed from the spectrum shown in Figure 6. 
Arrows indicate transitions from the phonon manifold to the internal vibration manifold for 
which the energy mismatch is less than 10 cm"1. Impact test results indicate ß-HMX to 
be less sensitive than y-HMX. 
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Figure 8. An energy level diagram for y-HMX constructed from the spectrum in Figure 6. Arrows 
indicate transitions from the phonon manifold to the internal vibration for which the energy 
mismatch is less than 10 cm"1. Impact test results indicate y-HMX to be more sensitive 
than ß-HMX. 
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Figure 9. Division of vibrational energy levels within a molecule into phonon and internal 
vibration manifolds. Following perturbation by impact, energy is transferred from 
the phonon manifold to the internal vibration manifold. 
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Figure 10. Dependence of the unimolecular rate constant on energy mismatch AE for 
vibrational intramolecular energy transfer. Dashed line is the product of a 
Lorentzian line shape (HWHM = 5 cm"1) and an approximation to the density 
of states typical to crystalline explosive materials. The smooth line is the 
function used in the calculations reported in this report. 
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Figure 11. The 10-level system used to test the model for vibrational energy transfer in solids. 
Arrows indicate relative rates, based on energy mismatch, AE, for several transitions. 
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Figure 12. Changes in deviation from equilibrium population, following an initial 

perturbation, for a phonon manifold level (mode 1. level 4. in Figure 11) and an 
internal vibration manifold level (mode 3, level 1. in Figure 11). The two levels 
have similar energies (AE<5 cm"1). 
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Figure 13. Change in phonon manifold energy (joules) as a function of time after perturbation, 
for 10-level systems that differ in the number of levels with favorable energy mismatch. 
AE. between phonon manifold energy levels and energy levels within the internal 
vibration manifold. The rate constant for resonant intramolecular energy transfer is 
taken to be 1 x 1013 sec"1 (see text). 
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Figure 14. Change in phonon manifold energy (joules) as a function of time after perturbation 
for the seven explosive materials examined in this report. The rate constant for resonant 
intramolecular energy transfer is taken to be 1 x 1013 sec"l (see text). 
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